Fixing the Achilles Heel of E-Voting: The Bulletin Board

IEEE Computer Security Foundations Symposium 2021

Lucca Hirschi, Lara Schmid, David Basin Inria DFINITY ETH Zurich

Key goals

1. Vote privacy. Threat model: 1 out of n tally servers[©]; other tally[©],voting server [©],BB[©]

Attack vector: BB equivocation

Main equivocation attack

- 3. proceed honestly with other voters and the auditors
- \rightarrow Tally has #(target voters) less ballots against

Detection is overwhelmingly unlikely (more in the paper)...

Other equivocation attacks

BB[☺] can equivocate on other data items towards different agents

We found various such equivocation attacks on Civitas and Belenios/Helios:

		Threat Model	Violate	Equivocation (content, reader)	PD?	Practical Detection?
Civitas Civitas	C.1 C.2 C.3 C.4 C.5	none (hon. tellers) none (hon. tellers) tabulation tellers none (hon. tellers) none (hon. tellers)	IV IV, UV IV, UV IV, UV EV, CR	possible candidates, voters (public) credentials, TTs ballots on final BB, voters blocks on final BB, final readers per-block credentials, TTs	~~~~	 i.e., easy fix? (other than a secure BB)
Belenios/Helios $\begin{cases} B \\ B \end{cases}$	8.1 8.2	decryption trustees none	IV, UV IV	ballots on final BB, voters ballots on non-final BB, voters	X X	

Fix the mismatch and the e-voting protocols

- ■ Verifiability definitions consider BB[©], we define Verifiability[®] accounting for BB[®]
- New BB requirement: FA that is
 - sufficient for verifiability:

 $(Verifiability \odot \land BB \vdash FA) \Rightarrow Verifiability \odot (BB)$

- provably minimal
- New easily deployable BB protocol + machine-checked proof BB^[©] ⊢ FA

One can securely replace the insecure BB (1 server) by our secure BB protocol → effectively weaken trust assumptions: Verifiability[©] → Verifiability[©]

Conclusion

Contributions:

- 1. **O** Practical attacks on Helios, Belenios, and Civitas
- 2. New BB requirement that is provably sufficient for verifiability
- 3. 🖧 A BB protocol that can be used to weaken trust assumptions & prevent 😨

Future work:

- 1. So Implement our attacks in the wild + user studies
- 2. Adapt Verifiability[©] to the probabilistic setting (instead of possibilistic)
- 3. Explore other trade-off threat model versus deployment cost

Backup slides

Our BB protocol design:

Write to the BB

Read from the BB

Assuming γ satisfies $\gamma > n-nh/2$ **versus** $\gamma > 2n/3$ (BFT).

- We were looking for minimal requirements for verifiability (no availability)
 - Readers agree on final state
 - Readers that read in between, can be sure that it will be included in the final state

- We were looking for minimal requirements for verifiability (no availability)
 - Readers agree on final state
 - Readers that read in between, can be sure that it will be included in the final state

- We were looking for minimal requirements for verifiability (no availability)
 - Readers agree on final state
 - Readers that read in between, can be sure that it will be included in the final state

- Permissionless:
 - rely on **economic incentives** \Rightarrow hard to quantify in the case of elections
 - transaction costs
 - often centralized in practice due to pools
- Permissioned ledgers: **few distinguished** nodes establish a consensus on data that can be publicly accessed by all other nodes
 - BFT, which requires strictly stronger trust assumptions than our solution