
Fixing the Achilles Heel of E-Voting:

The Bulletin Board

Lucca Hirschi, Lara Schmid, David Basin

IEEE Computer Security Foundations Symposium 2021

Inria DFINITY ETH Zurich

E-Voting and the BB

BB
😈

voting server

Key goals

1. Vote privacy. Threat model: 1 out of n tally servers😇; other tally😈,voting server 😈,BB😈

2. Verifiability believed to hold

○ provided the ZK proofs are sound → no trust requirement for the tally

○ even under dishonest tally😈, voting server😈, and BB😈

Voters

Auditor

Check ZK

proofs .

Check ballot

∊ BB .

cast ballots

Distributed

Tally

🖧

really❓

Tally

● 📝 Security proof of verifiability:
○ assume an idealized BB😇 (sometimes implicit): e.g. broadcast channel, shared memory

○ but too costly and complex to deploy

● 🖧 Actual design, reference implementation, and deployments:
○ voting server + BB = centralized server → single point of trust BB😈

s
tr

o
n
g

e
r

Questions

1. How does BB😈 impact verifiability in practice 🖧? → 💀 Identify the achilles heel

2. Which minimal BB requirement for Verifiability? → ✒ Fix the mismatch

3. Is this requirement practical? → 🔧 Fix the e-voting protocols 🖧

1. 💀 Practical attacks against Helios, Belenios, Civitas

2. ✒ Weaker BB requirement provably sufficient for Verifiability

3. 🔧 Design BB protocol 🖧 + machine-checked formal proof

mismatch

Contribution time !

Attack vector: BB equivocation

BB

voting server

Equivocation
BB😈

Equivocation: BB😈 shows a different content!

Distributed

Tally

🖧

Main equivocation attack

😈

Detection is overwhelmingly unlikely (more in the paper)...

😈 can induce a bias for :

1. target a set of voters who likely do not vote for

2. when casts a vote , remove from the BB😈, except for

3. proceed honestly with other voters and the auditors

→ Tally has #(target voters) less ballots against

Other equivocation attacks

BB😈 can equivocate on other data items towards different agents

We found various such equivocation attacks on Civitas and Belenios/Helios:

Civitas

Belenios/Helios

Practical Detection?

i.e., easy fix?

(other than a secure BB)

Fix the mismatch and the e-voting protocols

● ✒ Verifiability definitions consider BB😇, we define Verifiability😈 accounting for BB😈

● ✒ New BB requirement: FA that is

○ sufficient for verifiability:

(Verifiability😇 ⋀ BB ⊢ FA) ⇒ Verifiability😈(BB)

○ provably minimal

● 🖧 New easily deployable BB protocol + machine-checked proof BB😈 ⊢ FA

One can securely replace the insecure BB (1 server) by our secure BB protocol

→ effectively weaken trust assumptions:

Verifiability😇→ Verifiability😈

Conclusion

Contributions:

1. 💀 Practical attacks on Helios, Belenios, and Civitas
2. ✒ New BB requirement that is provably sufficient for verifiability
3. 🖧 A BB protocol that can be used to weaken trust assumptions & prevent 💀

Future work:

1. 💀 Implement our attacks in the wild + user studies

2. ✒ Adapt Verifiability😈 to the probabilistic setting (instead of possibilistic)

3. 🖧 Explore other trade-off threat model versus deployment cost

Backup slides

Our BB protocol design:

Write to the BB Read from the BB

Assuming γ satisfies γ > n−nh / 2 versus γ > 2n / 3 (BFT).

P1

BB

Proxy

Pn

.

.

.

write

Relay

● We were looking for minimal requirements for verifiability (no availability)

○ Readers agree on final state

○ Readers that read in between, can be sure that it will be included in the final state

BB protocol

P1

BB

Proxy

Pn

.

.

.

Return

signed

Only except if

extending

current BB

write

● We were looking for minimal requirements for verifiability (no availability)

○ Readers agree on final state

○ Readers that read in between, can be sure that it will be included in the final state

BB protocol

P1

BB

Proxy

Pn

.

.

.

request

● We were looking for minimal requirements for verifiability (no availability)

○ Readers agree on final state

○ Readers that read in between, can be sure that it will be included in the final state

Only accept if

γ > n−nh / 2

matching signatures

(nh = honest peers)

BB protocol

Why distributed ledger are not a perfect BB

● Permissionless:

− rely on economic incentives ⇒ hard to quantify in the case of elections

− transaction costs

− often centralized in practice due to pools

● Permissioned ledgers: few distinguished nodes establish a consensus on data

that can be publicly accessed by all other nodes

− BFT, which requires strictly stronger trust assumptions than our solution

